

May 4, 2015 File No.: 14-55-9544 Doc. #2

American Piledriving Equipment, Inc.

1345 Industrial Park Road Mullberry, FL 33860

Attention: Mr. Paul Suver Mr. Jim Casavant

Subject: Pile Load Test Program APE Helical Piles

Gentlemen:

As authorized by your return of our Proposal Project Acceptance Sheet regarding our proposal 14-p144 dated June 17, 2014, Ardaman & Associates, Inc. observed the installation of helical steel pipe piles at the American Piledriving Equipment, Inc. (APE) facility in Mulberry, Florida. This letter presents a brief summary of our site observations and the results of the load tests.

Background

APE installed four helical piles in their yard in Mulberry, Florida. The approximate locations of the test piles are shown in the attached Figure 1. Each test pile is steel pipe with an outside diameter of 7 inches and an inside diameter of 6 inches. Each pipe tip section has an 18-inches nominal diameter single flight auger at the tip of the pile. The auger plate was approximately 3/4 inch thick and was located about three inches to 9 inches above the pile tip.

Photo 1 - Helical Pile Tip

American Pile Driving Equipment, Inc. Helical Pile Load Tests – Mulberry, Florida May 4, 2015

Each pile has a threaded coupling on the top of a 20 feet long segment. Extension sections have threaded couplings to allow extension of the pile. The top threaded coupling also has a hex-head to allow for handling and coupling of the segments.

Photo 2 - Threaded Coupling at the Top of the Pipe Section

The piles may be installed grouted or un-grouted depending on the pile design and capacity requirements. If the piles are grouted, holes are burned into the tip of the pile below the bottom helical flight to allow injection of grout at the level of the helical plate as shown in Photo 3.

Photo 3 – Helical Pile Tip with Grout Holes

The pipe segments were picked up with a hydraulic rotary head mounted on a Caterpillar 349E Hydraulic Excavator. Photo 4 shows the excavator with the rotary head mounted to the machine. Photo 5 shows the rotary head used to drive the piles.

Photo 4 – Caterpillar 349E with the Rotery Pile Driving Head.

Photo 5 - APE Rotary Drive Head for Helical Piles

The load frame for the load test was developed by APE to mate to the helical piles that were driven as anchor piles. Each anchor pile has two or three levels of helical plates to provide additional uplift resistance to the anchor piles. See Photos 6 through 8 for photos of the test pile setup. The anchor piles were only 20 feet long, and they were not grouted.

Photo 6 - Attachment of the Load Frame to the Anchor Piles

Photo 7 - Load Frame Setup for the Vertical Load Test

Photo 8 – Load Frame Setup for the Lateral Load Test

Site Soil Conditions

The firm of Madrid Engineering Group, Inc. (MEG) of Bartow, Florida was engaged by APE to perform a Standard Penetration Test Boring (SPT, ASTM D-1586) at the APE yard in Mulberry, and install an observation well. A copy of the Madrid report is attached in Appendix A of this letter for reference. The performance of the boring was not observed by Ardaman & Associates, Inc. The boring encountered a stratum of medium to very loose sand from 0 to 12 feet below grade underlain by very loose silty sand with SPT N =2 bpf to 17 feet. The very loose silty sand was underlain by very soft clay with Weight of Hammer (WOH) resistance to 22 feet. The sequence was repeated with five feet of very loose sand underlain again by five feet of very soft clay to 32 feet below grade. The soil from 32 feet to 68 feet below grade was described as loose to medium calcareous clayey sand with a stiff calcareous clay layer from 47 to 52 feet below grade. The boring was terminated at 70 feet below grade in very dense calcareous clayey sand with limestone fragments. The SPT penetration resistance was 18-19-50/3" at 70 feet below grade.

The water table at the boring and at the observation well installed by MEG was recorded at 5 feet below grade.

The site area is known to have been subjected to strip mining for phosphate, and was reclaimed by bulldozing the overburden stripped from above the phosphate matrix to fill the mine pit. Based on evaluation of the boring data, the soil below a depth of 32 feet may not have been disturbed by mining.

Load Tests

As described above, the piles are installed by a rotary drill so inspection of the installation was limited to installation time. As a production system, tracking of torque and crowd might be possible; however,

those systems were not available at the time the piles were installed. Some piles were installed by APE without observation by an Ardaman & Associates, Inc. engineer at the site.

Load Test Results

A vertical load test was run on each of four (4) test piles. The locations of the test piles are shown in Figure 1. A lateral load test was run on each of three of the piles after the vertical load on the pile was completed. Each load test was numbered in the order the test was run, with the pile number and Load Test number recorded. The load tests were run by applying the load in increments, and allowing the pile to relax without increasing the load to the initial load. Otherwise, the load tests were run in general accordance with the Quick method as shown in ASTM D-1143.

Interpretation of vertical load tests in Florida is typically done using the Davisson Offset Method. In this method, an elastic deflection line for the pile is drawn on the load test graph assuming that the pile is a column loaded for its length. An offset line is drawn at 0.15+D/120 parallel to the elastic deflection line where D is the diameter of the pipe. The intersection of the offset line with the load-deflection curve for the load test is used to define the pile capacity. There are other methods used to interpret pile capacity from load test data, but this method is typically used in Florida, and is presented in this letter as the pile capacity for each load test.

The results of the lateral load tests will be described separately, following the presentation of the results of the vertical load tests.

Pile #1, LT-1

The pile was installed to about 70 feet below grade where it encountered high resistance to advancement. Grouting of the pile was inconsistent, so we believe that the grout was not continuous along the pile. Figure 3 shows the results of the load test. The load was brought to the target level, but it relaxed due to slippage of the anchor piles. Readings were taken until the load stabilized, and a "Best Fit" set of data were used to construct the load deflection relationship. The maximum load reached during the test was 73 tons at a displacement of 1.53 inches. The net displacement of the pile was 1.4 inches after unloading.

Pile #2, LT-3

The test pile was installed to about 70 feet below grade. In this case, the grouting was more consistent, and was probably continuous along the pile length. Figure 4 shows the results of the test. The pile could not be loaded to its ultimate capacity because the reaction piles were slipping, resulting in a maximum load of 191 tons applied to the top of the pile. The pile did not cross the Davisson Offset Line. The displacement at the maximum load was 0.77 inch. The net displacement after unloading was about $\frac{1}{4}$ inch.

Pile #3, LT-5

The test pile was installed to about 20 feet below grade. Based on the boring data available for review, the tip of the pile would be in a very soft clay with a Standard Penetration Test Resistance, N, described as Weight of Hammer. That is, the sampler punched into the ground under the static weight of the drill rods and the 140 lb test hammer. The pile was not grouted. The results of the load test are shown on Figure 5. The sample reached and ultimate load and Davisson Capacity of 12.7 tons at a deflection of

American Pile Driving Equipment, Inc. Helical Pile Load Tests – Mulberry, Florida May 4, 2015

0.22 inches. The pile then plunged to 0.85 inch displacement at a reduced load of 12.5 tons. The pile was re-loaded to confirm the test results. The second load plunged at 12 tons at about 1.39 inches displacement. The pile had a net displacement of 1.3 inches when the load was removed.

Pile #4, LT-7

This pile was installed to refusal at about 70 feet below grade. The pile was not grouted, so the stiffness of the pile was lower than for the grouted piles installed earlier. Figure 6 shows the results of the load test. The pile had a Davisson Offset Capacity of 112 tons at a deflection of 0.74 inch. The pile did not reach ultimate because APE directed that Ardaman terminate the loading at about 1 inch displacement. The capacity was 140 tons at 1 inch displacement, and about 151 tons at the end of primary loading with 1.093 inch displacement. The net displacement of the pile after unloading was less than 0.2 inch.

Lateral Load Tests

The lateral load test results for the three piles are shown in Figure 7 through 10 as horizontal displacement of the pile with increasing lateral load. Two dial gages were set in the primary jack direction, and one dial gage was set perpendicular to the jack to record the effect of off-center loading. The displacements recorded by the dials are shown on the figure.

Pile #1, LL-2

The pile was installed to 70 feet below grade. The pile was loaded laterally with the results shown in Figure 7. The load test was terminated at about 11 tons. The pile rebound data were lost when the jack suddenly depressurized when the valve was opened. The load at a displacement of $\frac{1}{2}$ inch was 9.1 tons.

Pile #2, LL-4

The pile was installed to a depth of 70 feet and grouted full length. The pile was loaded laterally, with the results of the load test shown in Figure 8. The loading was stopped when the pile exceeded 1 inch lateral displacement. The lateral load at a displacement of $\frac{1}{2}$ inch was 6.2 tons. The net pile displacement after the load was released was about 0.27 inch.

Pile #3, LL-6

Pile 3 was installed to a depth of 20 feet without grout. The results of the lateral load test are shown in Figure 10. The pile loading was stopped at about 1.2 inches total lateral deflection at a load of about 9.3 tons. The lateral load at $\frac{1}{2}$ inch deflection was 4.7 tons. The net deflection of the pile after the load was released was 0.4 inch.

Load Test Results Summary

The results of the load tests are summarized in Table 1, below. The data from the load tests are attached in Appendix B for reference.

Pile Numbe	Load Test Number	Pile Length	Davisson Capacity (tons)	Deflection (inches)	End of Test Capacity (tons)	Deflection (inches)	Remarks
1	Tumber	(11)	(10115)	(menes)	(10115)	(menes)	i containtis
Pile 1	LT-1	70	56	0.45	73	1.53	Partially Grouted
Pile 2	LT-3	70	NA	NA	191	0.77	Grouted/Reactions Slipping, did not reach ultimate
Pile 3	LT-5	20	12.7	0.22	12.0	1.39	Not Grouted
Pile 4	LT-7	70	111	0.74	151	1.093	Not Grouted, Load was not taken to ultimate
			L Force (tons)	ΔH (inches)	L Force (tons)	ΔH (inches)	
Pile 1	LL-2	70	9.1	0.50	10.6	1.00	Partially Grouted
Pile 2	LL-4	70	6.2	0.50	10.9	1.00	Grouted
Pile 3	LL-6	20	4.7	0.50	8.1	1.00	Not Grouted

TABLE 1 – SUMMARY OF PILE LOAD TEST RESULTS

Analyses of Pile Capacity

Vertical Load

It is important that the capacity of the helical piles can be predicted by typical analyses for pile capacity. The analyses for piles in Florida are typically performed using SPT-97 (FDOT Research Bulletin 121) or FB-Deep (Bridge Software Institute, University of Florida), computer programs developed for the Florida Department of Transportation to evaluate pile capacity using soil classification and SPT Penetration Resistance, N, in blows per foot. Figure 2 shows the results of SPT-97 analyses conducted by Ardaman & Associates, Inc. using the Madrid boring. The graphic log of the boring is shown adjacent to the results of the SPT-97 analyses for reference. The Figure shows the results of the analyses for the 7-inches diameter pipe coupled with the analyses for the 18-inches diameter plate tip bearing. Separate analyses were run for the shaft of the pile and for the tip plate bearing to analyze the total pile capacity. The figure shows good correlation of pile capacity for both grouted and un-grouted piles. The analyses for the shallow pile, Pile 3 at 20 feet depth, under predicts the capacity of the pile. However, it should be realized that the soil conditions are highly variable in mined, reclaimed land, so the actual soil conditions at the shallow depth may not be as represented in the boring. The deeper soil strata that were not disturbed by mining are more reliably predicted, and as noted above, the analyses correlated very well with the predicted capacity.

Analyses performed for bearing of the helical tip using the β Method and the Madrid boring indicate that piles terminated at 20 feet below grade would be in very soft clay soil with an undrained strength, Su, less than 150 psf. The β Method bearing for the 18 inch diameter auger plate in very soft clay would be less than 1 ton. However, the ultimate bearing at 70 feet below grade could be as high as 227 tons. As noted above, the analyses of plate bearing capacity can be predicted by the β method. In general, the deep piles

American Pile Driving Equipment, Inc. Helical Pile Load Tests – Mulberry, Florida May 4, 2015

were not loaded to their capacity, so the predicted capacity maybe above the actual measured maximum load.

Lateral Load Performance

The computer program LPILE 2013 was used to analyze the performance of the 20 foot deep pile. The results of the analyses are shown in Figure 10 as lateral load plotted against lateral displacement. The analyses using just the diameter and stiffness of the pipe over-predicted displacement significantly. However, when the system is assumed to have a diameter equal to the auger plate, and the stiffness is weighted as $E = Es*As/A_{Plate}$, the prediction of displacement versus load is very good as can be seen in Figure 10. The detailed output from LPILE is shown as displacement versus depth and moment versus depth in Figures 11 and 12.

Conclusions

In general, the single flight helical piles provided excellent capacity, and they were installed with no vibration. The capacity and lateral load performance of the piles can be predicted using typical analytical models.

We appreciate the opportunity to work with you on this project. If you have any questions on the data presented in this letter, please feel free to contact us at any time.

Very Truly Yours, Ardaman & Associates, Inc. Florida Certificate of Authorization No. 00005950

Ross T. McGillivray, P.E Senior Consultant Florida License No. 17920

Whitney A. Stevens, P.E. Senior Geotechnical Engineer Florida License No. 70821

Ardam	DRAWN BY: RT	M CHECKED BY:	DATE: 02-22-2015	Helical Pile Load Test Project	
RTM \/	FILE NO. 14-55-9544	APPROVED BY:	FL Registration: 17920	American Pile Driving Equipment, Inc Mulberry, Florida	Test Pile Locations

Pile #1 - 72 feet Deep - Ungrouted Pile #2 - 72 feet Deep - Grouted Pile #3 - 20 feet Deep - Ungrouted Pile #4 - 72 feet Deep - Grouted

American Pile Equipment, Inc. - Mulberry, FL SPT 97 Analyses of Piles - 7" Shaft Pipe w/ 18" Plate Tip Boring MEG SPT-1

Ardaman & Associates, Inc. I, Environ ntal and

American Pile Equipment, Inc. - 7-In. Dia. Single Flight Helical Steel Pipe Pile 3/8" Wall, Grout Filled - Pile 1, LT-1

Ardaman & Associates, Inc. Geotechnical, Environmental and Materials Consultants

American Pile Equipment, Inc. - 7-In. Dia. with 18-In. Dia. Single Flight Helical Steel Pipe Pile 3/8" Wall, Grout Filled Pile 2, LT-3

Ardaman & Associates, Inc. Geotechnical, Environmental and Materials Consultants

American Pile Equipment, Inc. - 7-In. Dia. with 18-In. Dia.

- 1. The pile is not grouted, Length 70 ft. below grade
- 2. Pile did not reach ultimate. Loading was terminated at Client's request

American Pile Equipment, Inc. - 7-In. Dia. Steel Pipe Pile 3/8 In. wall, 18-In. Dia. Single Flight Helical, Partially Grout Grouted - Pile 1, LL-2

Note: 1. Pile Length approximately70 feet below grade

2. Grouting was inconsistent due to injection problems during installation

3. D1 is perpendicular to the loading direction. D2 is below the jack level, D3 is above the jack level

4. Pile rebounded suddenly due to lack of valve at the pump. No unload data are available

American Pile Equipment, Inc. - 7-In. Dia., 3/8 In. Wall Steel Pipe with 18-In. Dia. Single Flight Helical, Grout Filled - Pile 2, LL-4

- 2. Grouting was inconsistent due to injection problems during installation
- 3. D3 is perpendicular to the loading direction. D2 is below the jack level, D1 is above the jack level
- 4. Jack is 8 inches above grade

Ardaman & Associates, Inc. Geotechnical, Environmental and Materials Consultants

Note: 1. Pile Length approximately 59 feet below grade

American Pile Equipment, Inc. - 7-In. Dia. 3/8 In. Wall Steel Pipe with 18-In. Dia. Single Flight Helical, No Grout - Pile 3, LL-6

Note: 1. Pile Length approximately 20 feet below grade

- 2. Pile was not grouted
- 3. D3 is perpendicular to the loading direction. D2 is below the jack level, D1 is above the jack level
- 4. Jack is 6.5 inches above grade

American Pile Equipment, Inc. - 7-In. Dia., Steel Pipe Pile 3/8'' Wall, 18-inches Dia. Single Flight Helical , No Grout - with LPILE Model Results Pile 3, LL-6

Ardaman & Associates, Inc. Geotechnical, Environmental and Materials Consultants

Ardaman & Associates, Inc. File: 14-55-9544 - APE Pile 3, LL-6 LPILE Model, Modified EI

Ardaman & Associates, Inc. File: 14-55-9544 - APE Pile 3, LL-6 LPILE Model, Modified EI

Appendix A

Madrid Engineering Group Letter Standard Penetration Test Boring Well Installation Log

American Piledriving Equipment, Inc. 14-55-9544

April 24, 2014

Mr. Matthew DeRextro American Piledriving Equipment 1345 Industrial Park Road Mulberry, FL 33860

Subject: Piezometer Installation and Soil Testing MEG Project No. 11347

Dear Mr. DeRextro:

At your request Madrid Engineering Group, Inc. (MEG) completed one SPT boring and a piezometer installation at the subject property located at 1345 Industrial Park Road in Mulberry, Florida. It is known that the property lies on reclaimed land formerly strip-mined for phosphate. It should be noted that this type of mined land typcially includes mixed sand and clayey sand soils with possible layers of very soft waste phosphatic clay to depths of up to 30 to 40 feet below ground surface (bgs).

NRCS Soil Survey Review

Soils data from the United States Department of Agriculture – Natural Resources Conservation Service (NRCS; formerly the Soil Conservation Service, or SCS) were reviewed as part of the investigation. Based on a review of the available information, the mapped soil unit in the vicinity of the property was identified as **Pomona fine sand** (map unit 7) and **Neilhurst sand**, **1 to 5 percent slopes** (map unit 12).

According to the NRCS, this Pomona soil is poorly drained on broad areas on flatwoods. Areas of this soil range from 5 to several hundred acres. Slopes are smooth to concave and are 0 to 2 percent. Typically, this soil has a very dark gray fine sand surface layer about 6 inches thick. The subsurface layer to a depth of about 21 inches is sand. It is light brownish gray in the upper part and light gray in the lower part. The subsoil to a depth of about 26 inches is dark reddish brown loamy fine sand. Below that is very pale brown and light gray fine sand to a depth of about 48 inches, light gray fine sandy loam to a depth of about 60 inches, and light gray sandy clay loam to a depth of about 73 inches. The underlying material is light gray loamy sand to a depth of at least 80 inches. This Pomona soil is reported to have a seasonal high water table within 12 inches of the surface for 1 to 4 months during most years. The available water capacity is low. This soil is severely limited as a site for urban development because of wetness. The absorption fields can be elevated American Piledriving Equipment; Mr. Matthew DeRextro Subject: Piezometer Installation and Soil Testing MEG Project No. 11347 Page 2 of 3

by adding fill material. The high water table interferes with proper functioning of septic tank absorption fields. To overcome the problems caused by wetness on sites used for buildings or local roads and streets, a drainage system can be installed to lower the high water table or fill material can be added to increase the effective depth to the high water table.

According to the NRCS, this excessively drained Neilhurst soil is on broad uplands and low knolls. It is formed in homogenous sandy material from phosphate and silica mining operations. Areas of this soil range from about 100 to 600 acres. Slopes are mainly smooth to concave. Typically, this soil has a grayish brown sand surface layer about 3 inches thick. The underlying material to a depth of at least 80 inches is light gray sand that is mixed with reddish brown and brown sand. Some areas have coarse sand or fragments of rock. This Neilhurst soil generally does not have a high water table within a depth of 80 inches; however, the water table can be within a depth of 30 inches for brief periods during the summer following heavy rainfall. The available water capacity is low.

SPT Boring and Piezometer Installation

One standard penetration test (SPT) soil boring, designated SPT-1, was completed on April 21, 2014, using the mud-rotary drilling method. Soil samples were collected from the boreholes in general accordance with ASTM D1586 using a 1.4-inch I.D. split-spoon sampler driven with a 140-pound slide safety hammer falling a distance of 30 inches.

Boring SPT-1 was located in a grassy area along the south side of the property. In general, the SPT boring encountered medium dense to very loose fine sand from the ground surface to a depth of approximately 12 feet bgs followed by very loose silty sand to a depth of 17 feet bgs. This unit was underlain by very soft waste phosphatic clay and very loose clayey sand to a depth of 32 feet bgs followed by loose to medium dense clayey sand with phosphate to a depth of 47 feet bgs, stiff clay with phosphate to a depth of 52 feet bgs and medium dense to very dense clayey sand with phosphate to the boring termination depth at 70 feet bgs. The boring log is attached to this letter.

The water table was estimated by soil saturation at a depth of approximately 5 feet bgs. No loss of drilling fluid circulation was noted during the boring. Based on the data obtained, the surficial (approximate) 32 feet of soil has been affected by the strip-mining and reclamation process. Natural, un-altered soil exists below a depth of 32 feet bgs.

One Piezometer well was installed to a depth of 25 feet bgs approximately 2 to 3 feet from the location of boring SPT-1. The permit number for this well is 835799 as filed with the State of Florida Southwest Water Management District. Similar soil conditions were encountered during the piezometer installation as those encountered in the SPT boring. The Piezometer consists of a 2-inch diameter PVC casing (25 feet length plus riser pipe) with the bottom 10 feet slotted PVC. A filter pack and a cement grout seal were installed near the surface as shown on the attached diagram. A 2-foot square concrete pad and 3-

American Piledriving Equipment; Mr. Matthew DeRextro Subject: Piezometer Installation and Soil Testing MEG Project No. 11347 Page 3 of 3

foot riser pipe are included. The water table was recorded at a depth of 5 feet bgs. The well was developed for approximately 30 minutes until clear after installation.

Limitations

The findings herein are based on the field investigation program conducted at the referenced site, research and review of previous data collected at the site, and our professional judgment. The conditions described within this report are accurate with respect to the location and extent described. Because conditions vary from place to place, conditions different from those encountered in our investigation may exist. The information in this report is intended for the sole use of the addressees and may not be relied upon, used by, or referenced by any third party. In the event conclusions and/or recommendations based on our data are made by others, such conclusions and/or recommendations are not our responsibility unless we have been given an opportunity to review and concur with them. MEG reserves the right to revise or update any of the observations, assessments, and/or recommendations as additional information becomes available or conditions change. No warranty regarding this investigation or the effectiveness of the stabilization measures is intended, nor should any be inferred.

Sincerely, Madrid Engineering Group, Inc. Roberts, Stach, P.G. Chief Geologisplos

Attachments:

SPT Boring Log Piezometer Diagram

Depth	DESCRIPTION	Depth	Elev.		10101010-10	STAND	ARD PE	ENET	[RA]	ION	N
(ft)		(ft)	(ft)	Blows	N-Value	0 10	20 30) 40	60	80	100
-	Medium dense, very pale brown, sand. (SP)			2-5-6-9	11						IX
-	v			7-6-7-8	13		•				IM
_	Loose, light gray.	5	₽	3-3-4-3	7 -	•		+	┼┼╴	⊢	HØ
-	Very pale brown.			4-3-6-6	9	•					
-	Very loose.			1/12"-3-2	3	•					
-		10 -			-			+	\square		
12 -	Very loose gray silty sand (SM)										
-				WOR/6"-1-1	2	•					
-		10 -			-						
17 -	Very soft, greenish gray, clay. (CH)	-//									
-		20 -		WOH/18" FAST	WOH .			+	\square		M
22 -											
_	Very loose, pale brown, clayey sand. (SC)			14/01//10/	MOLL						H
-		25 -		FAST	WOH			+	\square		
27 -	Vorusoft grov dov (CH)										
-	Very Solt, gray, day. (Ch)			WOH/18"	WOH (X
-		30 -		FAST	-			\top			
32 -	Loose, greenish gray, calcareous clayey sand with abundant	-////									
_	phosphate. (SC)	35		6-2-3	5	•				Ш	X
-											
-											
_	Medium dense, pale yellow.	40 -		6-6-8	14 -			+	$\left \right $	$\left \right $	_X
-											
-	Vellow			4-5-7	12						
-	renow.	45		407				+			+
47	Stiff, vellow, calcareous clay with phosphate, (CH)										
-		50		5-4-8	12						X
-		50 -									
52 -	Medium dense, yellow, calcareous clayey sand with										Ц
_	pnosphate. (SC)	55 -		4-5-7	12			+			A
-											
-	Creanish grou			479	15						H
_	Greenish gray.	60 -		4-7-0	- 15		-	+			\cap
-											
-	Gray.			5-9-11	20		•				X
-					-						
_											
_	Very dense, gray, calcareous clayey sand with phosphate and inducated fragments	70		18-19-50/3"	Refusal -						
					-	EET DOD		EC			
	DATE DRILLED 4/21/2014					LOI BUR	ING R	ECC	JKL	,	
J	PROJECT NUMBER 11347				REMARKS	S: No loss of circ	ulation occ	urred.	A surf	icial	
1	PROJECT American Pi	ledriving	Equip	oment		e was encountere	uaion. D	JS.			
The F	arth is Our Business - FAGE OF										

MEG WITH BLOW COUNTS 11347 SPT LOGS.GPJ SAMPLE.GDT 4/24/14

Appendix B

Load Test Jack Calibrations Load Test Field Log Data LPILE Output File

American Piledriving Equipment, Inc. 14-55-9544

Jaxx LLC

78

1920 Occidental AVE S Ste. E Seattle, WA 98134 Ph. (206) 624-5299 Fax (206) 624-5298

American Piledriving Equipment 7032 S. 196th Kent, WA 98032

Date:

10/7/2014

Report # 11039C

RE: Certification One (1) hydraulic ram, one (1) pump, one (1) gauge

Equipment:	Cylinder	Elect/Hyd Pump	PSI Gauge
Capacity:	10 TONS	10,000 PSI	0-10,000 PSI
Make:	BVA	Power Team	Wika
Model:	H1004	PE554	
Serial # (unit #):	H1405000125 (#3)	359104	

Calibration conforms to ANSI/NCSI. Z540-1

Test equiptment traceable to NIST

Certification	valid	until	
Germication	vanu	unun.	

Average Reading (PSI)	Certified Readings (lbs)				
0	0				
1,786.00	4,000.00				
3,670.00	8,220.00				
5,429.00	12,160.00				
7,188.00	16,100.00				
8,955.00	20,060.00				

Test Equiptment	S/N	Test Date	Recall Date	Test No.
CLC-400K	213351	12/10/2013	12/10/2014	97811

10/7/2015

Patrick Marks Service Technician

American Piledriving Equipment, Inc. CALIBRATION CHART #11039C

Power Team PE554 pump (s/n 3359104), BVA H1004 ram #3 (s/n H1405000125), Gauge

JAXX LLC 206-624-5299 1920 Occidental AVE S Ste. E Seattle, WA 98134 Ph. (206) 624-5299 Fax (206) 624-5298

American Piledriving Equipment 7032 S. 196th Kent, WA 98032

Date:

10/7/2014

Report # 11039B

RE: Certification One (1) hydraulic ram, one (1) pump, one (1) gauge

Equipment:	Cylinder	Elect/Hyd Pump	PSI Gauge
Capacity:	250 TONS	10,000 PSI	0-10,000 PSI
Make:	EAGLE PRO	Power Team	Wika
Model:	EDX-2506	PE554	
Serial # (unit #):	13052203-002 (#2)	359104	

Calibration conforms to ANSI/NCSI. Z540-1

Test equiptment traceable to NIST Certification valid until:

10/7/2015

Average Reading (PSI)	Certified Readings (lbs)
0	0
1,526.00	85,880.00
2,999.00	168,760.00
4,427.00	249,160.00
5,897.00	331,880.00
7,067.00	397,740.00

Test Equiptment	S/N	Test Date	Recall Date	Test No.
CLC-400K	213351	12/10/2013	12/10/2014	97811

Patrick Marks Service Technician

American Piledriving Equipment, Inc. CALIBRATION CHART #11039B

Power Team PE554 pump (s/n 359104), Eagle Pro EDX EDX-2506 ram #2 (s/n 13052203-002), Gauge

JAXX LLC 206-624-5299

Florida Certificate of Authorization No. 00005950

COMPRESSIVE STRENGTH OF CONCRETE CYLINDERS

Project Nar	ne:	Helica	al Pile Mon	itoring			Report	Date:	11/6/2014
Project Loc	Deject Location: 1345 Industrial Park Rd, Mulberry, Florida Deject Client: American Piledriving Equipment Deject Contractor: Unknown Specified Compressive Strength: Slump (inches): Unknown psi @ 28 days Unkn Mix Type: X Normal Wt. Lightweight Mortar Mix X Transit Mixed Pump Mixed Date: Time Concrete Batched: Time Goncrete Truck No: Ticket Number: Si Unknown Unknown Si Water Added at Job Site: Si					a	File Nu	mber:	14-55-9544
Project Clie	ent:	Amer	ican Piledr	iving Equipr	ment				
Project Cor	ntractor:	Unkn	own	vesti ni base		Concr	ete Supplier:	Unkr	nown
	Specified Compre	essive Streng	ith:		Slump (inches)	:	Air Content (perc	ent):	Product Code:
DESIGN	Unknown	psi @	28 °	lays	Un	nknown	N/A		Unknown
DATA	Mix Type:	X Norr	nal Wt.	Lightweight	Mortar Mix Pump Mixed	Grout	Other		
	Date:		Time Concre	te Batched:		Time Concrete Samp	led ¹ :	Samp	oled By:
	6/25/20	014		Unknowr	1	Unkn	own	1 10/ 11	AM
	Concrete Truck N		Licket Numb	ber:		Size of Load (C.Y.):	own	vveati	Inknown
	Water Added at J	lob Site		Olikilowi		Unixity of the second s		Extra	Water Authorized By:
		res 🗙 No	If Yes:		Gal. To		C.Y.		N/A
FIELD AND	Slump (inches) ² :		Air Tempera	ture (° F):		Concrete Temperatu	re (° F) ³ :	Wet V	Veight (P.C.F.):
LAB DATA	Unkno	wn		Unknown	ı	Unkn	own		N/A
	Air Content (% by	v Vol) ⁴ :	Molded and	Cured ⁵ to gene	eral accordance v	vith ASTM C-31:		Teste	d to ASTM C-39:
	N/A	8	X	Yes	No No	Unknown			🗙 Yes 🗌 No
	Location of Conci	rete Placeme	nt:						
	Unknown								
Set No.	Date	Date	Age	Test Spe	cimen Size	Total Load Applied	Test Strength	Type	Specimen Weight
1 Set No.	In Lab	Tested	(days)	Diameter (in.)	Area (sq. in.)	(lbs)	(psi)	Fractu	ire (Air Dry-Ibs)
а	11/5/2014	11/5/14	133	4.00	12.57	126,950	10.100	5	
b		11/5/14	133	3.97	12.38	105,781	8,550	5	
с		11/5/14	133	4.01	12.63	125,151	9,910	5	
REMARKS:	annual of concrete col	leated in accord	ance with ASTM	C 172			Type of Frac	ctures	
2 - Slump measure	ement performed in acc	ordance with AS	TM C-143.	STM C 1064					
4 - Air content of re	epresentative sample of	f concrete deterr	nined in accordan	nce with ASTM C-2	31.				
5 - Concrete speci	men cured in accordant	ce with ASTIVI C.	-s r alter being re	ceived in laboratory	y.				
								\backslash	
							LY II		
						TYPE 1 TYPE 2		PEWS BED	TYPE 6
PUBLICATION OF S	TATEMENTS, CONCLU	USIONS OR EX	TRACTS FROM	OUR REPORTS IS	RESERVED PENDI	NG OUR WRITTEN APPRO	DVAL.	CE	NS
State Chick Contraction								No B	0022
CMEC		creditation l	No. 1001527					X	
	ASTM E3	29, C1077 ar	nd D3740				6 C	21	The m
1000 00 Ch						By:	Dhille D	TAT	ELDE SUE
							Florida	Licen	se No. 60922
							11.05	VON	ALENASSE
							04	111111	ATTONIE STATE

14-55-9544 - APE, M Ardaman & Associate LT-1 W Pile - Pile 1 Jack Load Calculation	n Iulberry, FL es, Inc Tampa, FL n		Pile Flight Pipe: Pipe Wall	17 7 0.375	in dia. in dia. inch		As = Ag = Qb = Qf = Qf = As = Context	7.804894 Sq. inches 30.67962 sq. inches 53.90777 Tons 153.1526 Tons				
Ram Area:	56.28 in ²											
		Pump										
Pump Pressure	Jack Load	Pressure	Test Load									
(psi)	(tons)	(psi)	(tons)	D1 (in)	D2 (in)	D3 (in)		$\Delta 1$ (in)	$\Delta 2$ (in)	$\Delta 3$ (in)	Average Δ	
		· · ·	· · · ·			. ,			. ,		e	
1000	28.14	500	14.07									
2000	56.28	1000	28.14									
3000	84 42	1500	42.21									
4000	112.56	2000	56.28									
5000	140.7	3000	84 42									
6000	168.84	4000	112.56									
7000	106.04	5000	140.7									
8000	225.12	6000	168.84									
8000	223.12	7000	106.04									
8730	240.223	7000	190.98									Post Eit De
Calibration		Load Test										load
Calibration	0		0	0.762	0.70	0 822		0	0	0	0	<u>10au</u>
1526	42.04	0.45	26 5022	0.702	0.78	0.822	10.22.24	0.051	0.042	0.026	0.042	26 5022
1526	42.94	945	20.5923	0./11	0.738	0.786	10:22:36	0.051	0.042	0.036	0.043	26.5923
2999	84.58	1/50	49.245	0.465	0.495	0.545	10:25	0.297	0.285	0.277	0.286333	45.7275
4427	124.58	1690	47.5566	0.457	0.491	0.541	10:27	0.305	0.289	0.281	0.291667	52.7625
5897	165.94	1575	44.3205	0.457	0.49	0.54	10:29	0.305	0.29	0.282	0.292333	56.28
7067	198.87	1625	45.7275	0.451	0.47	0.545	10:31	0.311	0.31	0.277	0.299333	59.6568
		1975	55.5765	0.393	0.411	0.476	10:33	0.369	0.369	0.346	0.361333	66.129
		1900	53.466	0.388	0.406	0.472	10:34	0.374	0.374	0.35	0.366	68.5209
		1890	53.1846	0.386	0.404	0.469	10:35	0.376	0.376	0.353	0.368333	70.35
		1875	52.7625	0.384	0.404	0.469	10:36:36	0.378	0.376	0.353	0.369	73.164
		2100	59.094	0.299	0.317	0.38		0.463	0.463	0.442	0.456	
		2075	58.3905	0.295	0.314	0.378	10:39	0.467	0.466	0.444	0.459	73.164
		2025	56.9835	0.29	0.308	0.373	10:42	0.472	0.472	0.449	0.464333	25.326
		2000	56.28	0.2885	0.384	0.371	10:47	0.4735	0.396	0.451	0.440167	1.407
		2275	64.0185	0.085	0.101	0.162	10:48	0.677	0.679	0.66	0.672	
		2200	61.908	0.078	0.094	0.156	10:57	0.684	0.686	0.666	0.678667	
		2100	59.094	0.075	0.091	0.153	11:02	0.687	0.689	0.669	0.681667	
	R1	2100	59.094	0.078	0.095	0.157	11:08	0.684	0.685	0.665	0.678	
	R1	2120	59.6568	0.813	0.642	0.842	11:14	0.684	0.685	0.665	0.678	
		2450	68.943	0.688	0.514	0.712	11:15	0.809	0.813	0.795	0.805667	
		2400	67.536	0.679	0.506	0.699	11:20	0.818	0.821	0.808	0.815667	
		2350	66.129	0.678	0.505	0.697	11:24	0.819	0.822	0.81	0.817	
		2650	74.571	0.455	0.275	0.457	11:25	1.042	1.052	1.05	1.048	
		2500	70.35	0.438	0.275	0.457	11:30	1.059	1.052	1.05	1.053667	
	R2	2500	70.35	0.438	0.264	0.456	11:34	1.059	1.063	1.051	1.057667	
	R2	2400	67.536	0.797	0.908	0.884	11:38	1.059	1.063	1.051	1.057667	
		2400	67.536	0.797	0.908	0.884	11:40	1.059	1.063	1.051	1.057667	
		2435	68.5209	0.8	0.909	0.884	11:41	1.062	1.062	1.051	1.058333	
		2675	75.2745	0.665	0.771	0.744	11:44	1.197	1.2	1.191	1.196	
		2600	73.164	0.654	0.762	0.737	11:48	1.208	1.209	1.198	1.205	
		2500	70.35	0.654	0.762	0.736	11:54	1.208	1.209	1.199	1.205333	
		2500	75.978	0.356	0.448	0.42	11:57	1.200	1.523	1.515	1.514667	
		2700	73 8675	0.336	0.440	0.42	12.01	1.500	1 531	1 523	1 526667	
		2620	73 164	0.330	0.44	0.412	2.01	1.520	1 538	1 522	1 531667	
		2000	75.104	0.527	0.455	0.413	2.09	1.555	1.556	1.344	1.551007	
		2600	73 164	0 327	0.432	0.412	2.00	1 525	1 539	1 522	1 531667	
		2000	22.512	0.327	0.435	0.413	12:11	1.555	1.489	1.477	1.483	
		500						1.105				
		800	22.512	0.379	0.482	0.458	12:11	1.483	1.489	1.477	1.483	
		850	23.919	0.384	0.486	0.46	12:14	1.478	1.485	1.475	1.479333	
		900	25.326	0.383	0.485	0.46	12:22	1.479	1.486	1.475	1.48	
		0	0	0.51	0.601	0.565	12:23	1.352	1.37	1.37	1.364	
		20	0.5628	0.515	0.606	0.57	12:27	1.347	1.365	1.365	1.359	
		50	1 407	0.521	0.71	0.574	12.22	1 241	1 2 4 1	1 2 4 1	1 25 4 2 2 2	

APE Helical Pipe Pil 14-55-9544 - APE, N	es Iulberry, FL		Dila Eliabe	17			Tip 'aT = As = A	1.57625 7.804894	sq. ft. Sq. inches				
Lateral Load Test LL Jack Load Calculatio	es, inc Tampa, FL 2 n		Pipe: Pipe Wall	0.375	in dia. inch		Ag = Qb = Qf =	53.90777 153.1526	sq. menes Tons Tons				
Ram Area:	56.28 in ²												
Duran Davasar	Indu I and	Pump	TestIssd										
(psi)	(tons)	(psi)	(tons)	D1 (in)	D2 (in)	D3 (in)		$\Delta 1$ (in)	$\Delta 2$ (in)	Δ3 (in)	Average Δ		
		250	0.28							SQRT(((Δ2+Δ3)/2) ² +Δ1 ²)		
		500	0.56										
		750	0.84										
		1000	1.12										
		1250	1.4										
		1500	1.68										
		1750	1.96										
		2000	2.24										
		2125	2.38									P (tons)	Best Fit Δ
Calibration		Load Test											
0	0 0.001	112 0	0	0.358	-0.026	0.169		0	0	0	0	0	0
1786	2	650	0.728	0.358	-0.005	0.19		0	0.021	0.021	0.021	0.728	0.021
3670	4.11	1400	1.568	0.357	0.019	0.204		0.001	0.045	0.035	0.040012	1.568	0.040012
5429	6.08	1650	1.848	0.356	0.028	0.2105		0.002	0.054	0.0415	0.047792	1.848	0.047792
7188	8.05	2000	2.24	0.355	0.039	0.219		0.003	0.065	0.05	0.057578	2.24	0.057578
8955	10.03	3000	3.36	0.35	0.074	0.2475		0.008	0.1	0.0785	0.089608	3.36	0.089608
		3800	4.256	0.344	0.115	0.283		0.014	0.141	0.114	0.128266	4.256	0.128266
		4375	4.9	0.342	0.139	0.302		0.016	0.165	0.133	0.149857	4.9	0.149857
		4800	5.376	0.34	0.162	0.322		0.018	0.188	0.153	0.171448	5.376	0.171448
		5650	6.328	0.333	0.214	0.365		0.025	0.24	0.196	0.219429	6.328	0.219429
		6600	7.392	0.319	0.29	0.428		0.039	0.316	0.259	0.290133	7.392	0.290133
	P	7600	8.512	0.302	0.376	0.5		0.056	0.402	0.331	0.370754	8.176	0.374921
	R	7300	8.176	0.299	0.38	0.5035		0.059	0.406	0.3345	0.374921	9.296	0.554497
	K	/300	8.176	0.712	0.338	0.5		0.059	0.406	0.3345	0.374921	10.528	0.96958
		8450	9.464	0.688	0.432	0.579		0.083	0.5	0.4135	0.46423	11.06	1.208654
		8300	9.296	0.688	0.437	0.584		0.083	0.599	0.4975	0.554497		
		9450	10.584	0.054	0.558	0.089		0.117	0.819	0.0805	0.06058		
		9400 9875	10.328	0.632	0.595	0.094		0.119	1.044	1.1025	1.208654		
		Ο	0	0.762	0.035	0.255							
		0	0	0.702	0.055	0.255							

APE Helical Pipe Pile	es						Tip 'aT =	1.767146 sq. ft.			
14-55-9544 - APE, M	Iulberry, FL						As =	7.804894 Sq. inches			
Ardaman & Associate	es, Inc Tampa, FL		Pile Flight	18 1	in dia.		Ag =	30.67962 sq. inches			
LT-3W Pile			Pipe:	7 i	in dia.		Qb =	60.43639 Tons			
Jack Load Calculation	n		Pipe Wall	0.375	inch		Qf =	153.1526 Tons			
Ram Area:	56.28 in ²										
		Pump									
Pump Pressure	Jack Load	Pressure	Test Load								
(psi)	(tons)	(psi)	(tons)	D1 (in)	D2 (in)	D3 (in)		$\Delta 1$	$\Delta 2$	$\Delta 3$ (in)	Avg
1000	28.14	500	14.07					<u>(III)</u>	<u>(111)</u>	<u>(III)</u>	
2000	56.28	1000	28.14								
3000	84.42	1500	42.21								
4000	112.56	2000	56.28								
5000	140.7	3000	84.42								
6000	168.84	4000	112.56								
7000	196.98	5000	140.7								
8000	225.12	6000	168.84								
8750	246.225	7000	196.98								
Calibration		Load Test									
0	0	0	0	0.668	0.357	0.34	Ļ	0	0	0	0
1526	42.94	950	26.733	0.688	0.395	0.373	1	0.02	0.038	0.033	0.030333
2999	84.38	1800	50.652	0.739	0.452	0.435	14:33	0.071	0.095	0.095	0.087
4427	124.58	2725	76.6815	0.787	0.508	0.469	14:38	0.119	0.151	0.129	0.133
5897	165.94	3700	104.118	0.8665	0.593	0.586	5 14:42	0.1985	0.236	0.246	0.226833
7067	198.87	4675	131.5545	0.973	0.6995	0.691		0.305	0.3425	0.351	0.332833
		5475	154.0665	1.015	0.814	0.797	,	0.347	0.457	0.457	0.420333
		5800	163.212	1.174	0.889	0.864	Ļ	0.506	0.532	0.524	0.520667
		6075	170.9505	1.29	1.004	0.97	,	0.622	0.647	0.63	0.633
		6800	191.352	1.31	1.025	0.993		0.642	0.668	0.653	0.654333
		6800	191.352	1.436	1.136	1.092	2	0.768	0.779	0.752	0.766333
		6800	191.352	1.436	1.136	1.092	2	0.768	0.779	0.752	0.766333
		4000	112.56	1.339	1.041	0.995	i	0.671	0.684	0.655	0.67
		2100	59.094	1.146	0.848	0.806	5	0.478	0.491	0.466	0.478333
		1100	30.954	1.035	0.734	0.69)	0.367	0.377	0.35	0.364667
		0	0	0.967	0.63	0.535	i	0.299	0.273	0.195	0.255667

APE Helical Pipe Pile 14-55-9544 - APE, M Ardaman & Associate Lateral Load Test LL Jack Load Calculation	es lulberry, FL es, Inc Tampa, F -4 1	L		Pile Flight Pipe: Pipe Wall	18 7 0.375	in dia. in dia. inch		Tip 'aT = As = Ag = Qb = Qf =	1.767146 7.804894 30.67962 60.43639 153.1526	sq. ft. Sq. inches sq. inches Tons Tons		
Ram Area:	56.28 i	n ²										
		Pum	p									
Pump Pressure	Jack Load	Press	ure	Test Load								
(psi)	(tons)	(psi)	(tons)	D1 (in)	D2 (in)	D3 (in)		$\Delta 1$ (in)	$\Delta 2$ (in)	Δ3 (in)	Average Δ
			250	0.28							SQRT((((Δ1+Δ2)/2)^2+Δ3^2)
			500	0.56								
			750	0.84								
			1000	1.12								
			1250	1.4								
			1500	1.68								
			1750	1.96								
			2000	2.24								
			2125	2.38								
Calibration		I oad Te	et									
Canoration	0	0.00112	51 0	0	0.3	03	0.6		0	0	0	0
1786	2	0.00112	325	0 364	0.318	0.314	0.0	5	0.018	0.014	0	0.016
3670	4 11		500	0.56	0.310	0.314	0.598	,	0.034	0.014	-0.002	0.031064
5429	6.08		950	1 064	0.377	0.320	0.598	,	0.034	0.020	-0.002	0.069529
7188	8.05		1410	1 5792	0.424	0.502	0.598		0.124	0.002	-0.002	0.112018
8955	10.03		1925	2 156	0.472	0 4 3 9	0.595		0.121	0 1 3 9	-0.002	0 15558
0,00	10.00		2900	3 248	0 564	0.514	0.614	L	0 264	0.214	0.014	0 23941
			3395	3.8024	0.61	0.555	0.614	l	0.31	0.255	0.014	0.282847
			3900	4.368	0.661	0.599	0.612		0.361	0.299	0.012	0.330218
			4325	4.844	0.697	0.638	0.604	Ļ	0.397	0.338	0.004	0.367522
			4900	5.488	0.759	0.682	0.592	!	0.459	0.382	-0.008	0.420576
			5300	5.936	0.815	0.73	0.574	Ļ	0.515	0.43	-0.026	0.473215
			5800	6.496	0.863	0.771	0.564	Ļ	0.563	0.471	-0.036	0.518252
			6200	6.944	0.919	0.816	0.563		0.619	0.516	-0.037	0.568705
			6700	7.504	0.982	0.87	0.549)	0.682	0.57	-0.051	0.628074
			7200	8.064	1.041	0.918	0.542	!	0.741	0.618	-0.058	0.681971
			7675	8.596	1.096	0.964	0.545	i	0.796	0.664	-0.055	0.732069
			8200	9.184	1.149	1.006	0.544	Ļ	0.849	0.706	-0.056	0.779514
			8700	9.744	1.211	1.058	0.541		0.911	0.758	-0.059	0.836583
			9200	10.304	1.274	1.111	0.536	5	0.974	0.811	-0.064	0.894792
			9400	10.528	1.302	1.134	0.527		1.002	0.834	-0.073	0.920898
			9600	10.752	1.342	1.167	0.53	5	1.042	0.867	-0.07	0.957063
			9790	10.9648	1.348	1.175	0.529)	1.048	0.875	-0.071	0.964118
	I	R D1	9725	10.892	1.09	1.188	0.528	5	1.048	0.888	-0.072	0.970674
			9850	11.032	1.195	1.192	0.528	5	1.153	0.892	-0.072	1.025032
			0070	11.025	4 4 6 -		0			0.007	0.075	1 005000
			9850	11.032	1.195	1.192	0.528	5	1.153	0.892	-0.072	1.025032
			0100	6.832	1.023	1.143	0.524	+	0.981	0.843	-0.076	0.915161
			5100	3.472	0.795	0.97	0.528) 7	0.753	0.67	-0.072	0./15134
			1100	1.232	0.504	0.729	0.55/		0.462	0.429	-0.043	0.44/3/
			0	0	0.297	0.304	0.50	,	0.255	0.204	-0.04	0.202303

APE Helical Pipe Pile	es						Tip 'aT =	1.767146 sq. ft.			
14-55-9544 - APE, N	Iulberry, FL						As =	7.804894 Sq. inches			
Ardaman & Associat	es, Inc Tampa, FL		Pile Flight	18	in dia.		Ag =	30.67962 sq. inches			
Pile 3, LT-5 Pile			Pipe:	7	in dia.		Qb =	60.43639 Tons			
Jack Load Calculation	n		Pipe Wall	0.375	inch		Qf =	153.1526 Tons			
Ram Area:	56.28 in ²										
		Pump									Avg
Pump Pressure	Jack Load	Pressure	Test Load								Δ1:Δ3
(psi)	(tons)	(psi)	(tons)	D1 (in)	D2 (in)	D3 (in)		$\Delta 1$	$\Delta 2$	$\Delta 3$	(in)
1000	28.14	500	14.07					<u>(111)</u>	<u>(1n)</u>	<u>(1n)</u>	
2000	56.28	1000	28.14								
3000	84.42	1500	42.21								
4000	112.56	2000	56.28								
5000	140.7	3000	84.42								
6000	168.84	4000	112.56								
7000	196.98	5000	140.7								
8000	225.12	6000	168.84								
8750	246.225	7000	196.98								
Calibration		Load Test									
0	0	0	0	0.196	0.195	0.195		0	0	0	0
1526	42.94	200	5.628	0.218	0.216	0.216	i	0.022	0.021	0.021	0.021333
2999	84.38	325	9.1455	0.283	0.274	0.264		0.087	0.079	0.069	0.078333
4427	124.58	450	12.663	0.448	0.436	0.416	i	0.252	0.241	0.221	0.238
5897	165.94	450	12.663	1.077	1.066	1.047		0.881	0.871	0.852	0.868
7067	198.87										
		450	12.663	1.077	1.066	1.047		0.881	0.871	0.852	0.868
		300	8.442	1.07	1.059	1.043		0.874	0.864	0.848	0.862
		200	5.628	1.06	1.05	1.035		0.864	0.855	0.84	0.853
		0	0	1.018	1.008	0.994		0.822	0.813	0.799	0.811333
		0	0	1.018	1.008	0.994		0.822	0.813	0.799	0.811333
		200	5.628	1.042	1.032	1.017		0.846	0.837	0.822	0.835
		390	10.9746	1.079	1.032	1.049	1	0.883	0.837	0.854	0.858
		415	11.6781	1.203	1.191	1.174		1.007	0.996	0.979	0.994
		425	11.9595	1.331	1.318	1.302		1.135	1.123	1.107	1.121667
		425	11.9595	1.578	1.566	1.6	i	1.382	1.371	1.405	1.386
		425	11.9595	1.578	1.566	1.6	i	1.382	1.371	1.405	1.386
		200	5.628	1.571	1.559	1.514		1.375	1.364	1.319	1.352667
		0	0	1.513	1.503	1.49)	1.317	1.308	1.295	1.306667

APE Helical Pipe Pile 14-55-9544 - APE, M Ardaman & Associate Lateral Load Test Pile Jack Load Calculation	es Iulberry, FL es, Inc Tampa, F e 3, LL-6 n	L		Pile Flight Pipe: Pipe Wall	18 i 7 i 0 375 i	n dia. n dia. nch		Tip 'aT = As = Ag = Qb = Of -	1.767146 7.804894 30.67962 60.43639	sq. ft. Sq. inches sq. inches Tons Tons			
Ram Area:		n ²		ripe wan	0.070			X •	10011020	10115			
Rain / Irea.	50.201		Pump										
Pump Pressure	Jack Load		Pressure	Test Load								Average	
(psi)	(tons)		(psi)	(tons)	D1 (in)	D2 (in)	D3 (in)		$\Delta 1$ (in)	Δ2 (in)	Δ3 (in)	$\Delta 1, \Delta 2$	
			250	0.28							SQRT(((Δ1+Δ2)/2) ² +	-Δ3^2)
			500	0.56									
			750	0.84									
			1000	1.12									
			1250	1.4									
			1500	1.68									
			1750	1.96									
			2000	2.24									
			2125	2.38									
Calibration		L	oad Test										
0	0	0.00112	0	0	0.602	0.701	1.099		0	0	0	0	
1786	2		300	0.336	0.631	0.727	1.2		0.029	0.026	0	0.0275	
3670	4.11		500	0.56	0.65	0.743	1.202		0.048	0.042	0.002	0.045044	
5429	6.08		700	0.784	0.666	0.756	1.203		0.064	0.055	0.003	0.059576	
7188	8.05		900	1.008	0.689	0.775	1.205		0.087	0.074	0.005	0.080655	
8955	10.03		1075	1.204	0.708	0.79	1.207		0.106	0.089	0.007	0.097751	
			1275	1.428	0.729	0.808	1.208		0.127	0.107	0.008	0.117273	
			1490	1.6688	0.754	0.83	1.209		0.152	0.129	0.009	0.140788	
			1675	1.876	0.781	0.852	1.21		0.179	0.151	0.01	0.165303	
			1850	2.072	0.802	0.87	1.211		0.2	0.169	0.011	0.184828	
			2050	2.296	0.827	0.887	1.214		0.225	0.186	0.014	0.205976	
			2225	2.492	0.847	0.929	1.218		0.245	0.228	0.018	0.25/184	
			2423	2.710	0.873	0.929	1.210		0.271	0.228	0.018	0.230148	
			2073	3 248	0.939	0.955	1.219		0.302	0.234	0.019	0.311209	
			3300	3 696	0.939	1.031	1.221		0.337	0.284	0.021	0.360612	
			3725	4 172	1.055	1.031	1 221		0.453	0 383	0.021	0.418527	
			4075	4.564	1.107	1.127	1.223		0.505	0.426	0.021	0.466068	
			4375	4.9	1.151	1.165	1.224		0.549	0.464	0.024	0.507068	
			4675	5.236	1.197	1.204	1.221		0.595	0.503	0.021	0.549401	
			4990	5.5888	1.262	1.261	1.221		0.66	0.56	0.021	0.610361	
			5375	6.02	1.314	1.308	1.217		0.712	0.607	0.017	0.659719	
			5800	6.496	1.387	1.369	1.211		0.785	0.668	0.011	0.726583	
			6375	7.14	1.505	1.471	1.198		0.903	0.77	-0.002	0.836502	
			6900	7.728	1.612	1.564	1.186		1.01	0.863	-0.014	0.936605	
			7500	8.4	1.735	1.671	1.167		1.133	0.97	-0.033	1.052018	
			8100	9.072	1.875	1.794	1.139		1.273	1.093	-0.061	1.184572	
			8295	9.2904	1.925	1.838	1.127		1.323	1.137	-0.073	1.232164	
			8295	9 2904	1 925	1 838	1 127		1 323	1 137	-0.073	1 232164	
			6075	6 804	1.925	1 811	1 131		1 248	1 11	-0.069	1.181017	
			4100	4.592	1.701	1.66	1.156		1.099	0.959	-0.044	1.02994	
			2100	2.352	1.444	1.444	1.181		0.842	0.743	-0.019	0.792728	
			600	0.672	1.117	1.164	1.195		0.515	0.463	-0.005	0.489026	
			0	0	0.997	1.062	1.197		0.395	0.361	-0.003	0.378012	

Pile 4, LT-7, Vertical Load Test

APE Helical Pipe Pile 14-55-9544 - APE, Mi Ardaman & Associate Pile 4, LT-7 Pile Jack Load Calculation	s ulberry, FL ss, Inc Tampa, FL		Pile Flight Pipe: Pipe Wall	17 i 7 i 0.375 i	in dia. in dia. inch		Tip 'aT = As = Ag = Qb = Qf =	1.57625 7.804894 30.67962 53.90777 153.1526	sq. ft. Sq. inches sq. inches Tons Tons		Qs = Qg = QT =	195.1224 Tons 76.69904 271.8214
Ram Area:	56.28 in ²											
D	T. J. T J	Pump	T I I									
Pump Pressure	Jack Load	Pressure	Test Load	D1(in)	D2(in)	D2(in)			DI	D	D2	A
(psi)	(tons)	(psi)	(tons)	DT (III)	D2 (III)	D3 (III)			DI (in)	(in)	(in)	Average
1000	28.14	500	14.07						<u>(III)</u>	<u>(III)</u>	(11)	
2000	56.28	1000	28.14									
3000	84.42	1500	42.21									
4000	112.56	2000	56.28									
5000	140.7	3000	84.42									
6000	168.84	4000	112.56									
7000	196.98	5000	140.7									
8000	225.12	6000	168.84									
8750	246.225	7000	196.98									
Calibration		Load Test										
0	0	0	0	1.814	1.889	1.85			0	0	0	0
1526	42.94	200	5.628	1.774	1.872	1.838			-0.04	-0.017	-0.012	-0.023
2999	84.38	390	10.9746	1.756	1.861	1.825			-0.058	-0.028	-0.025	-0.037
4427	124.58	575	16.1805	1.78	1.881	1.839			-0.034	-0.008	-0.011	-0.01767
5897	165.94											
7067	198.87	200	5.628	0.291	0.108	0.128			0	0	0	0
		400	11.256	0.306	0.127	0.148			-0.015	-0.019	-0.02	-0.018
		590	16.6026	0.323	0.143	0.163			-0.032	-0.035	-0.035	-0.034
		750	21.105	0.351	0.166	0.184			-0.06	-0.058	-0.056	-0.058
		950	26.733	0.384	0.193	0.206			-0.093	-0.085	-0.078	-0.08533
		1120	31.3108	0.419	0.224	0.235			-0.128	-0.116	-0.107	-0.117
		1550	13 617	0.402	0.203	0.271			-0.171	-0.135	-0.143	-0.13033
		1725	48 5415	0.5485	0.344	0.349			-0.215	-0.175	-0.102	-0.17735
		1905	53.6067	0.592	0.385	0.388			-0.301	-0.277	-0.26	-0.27933
		2125	59.7975	0.636	0.427	0.43			-0.345	-0.319	-0.302	-0.322
		2300	64.722	0.681	0.4695	0.471			-0.39	-0.3615	-0.343	-0.36483
		2500	70.35	0.729	0.515	0.516			-0.438	-0.407	-0.388	-0.411
		2750	77.385	0.771	0.557	0.557			-0.48	-0.449	-0.429	-0.45267
		2900	81.606	0.812	0.5975	0.597			-0.521	-0.4895	-0.469	-0.49317
		3290	92.5806	0.902	0.686	0.685			-0.611	-0.578	-0.557	-0.582
		3690	103.8366	0.995	0.777	0.775			-0.704	-0.669	-0.647	-0.67333
		4050	113.967	1.085	0.866	0.863			-0.794	-0.758	-0.735	-0.76233
		4425	124.5195	1.178	0.955	0.951			-0.88/	-0.847	-0.823	-0.85233
		4825	135.//55	1.279	1.055	1.05			-0.988	-0.947	-0.922	-0.95255
		5375	140.526	1.372	1.147	1.142			-1.081	-1.039	-1.014	-1.04407
		5515	151.2525	1.425	1.171	1.172			-1.152	-1.005	-1.004	-1.055
		5375	151.2525	1.423	1.191	1.192	0	0	-1.132	-1.083	-1.064	0 -1.093
		5010	140.9814	1.422	1.196	1.191			-1.131	-1.088	-1.063	-1.094
		4025	113.2635	1.307	1.084	1.08			-1.016	-0.976	-0.952	-0.98133
		3050	85.827	1.134	0.913	0.909			-0.843	-0.805	-0.781	-0.80967
		2075	58.3905	0.927	0.708	0.704			-0.636	-0.6	-0.576	-0.604
		1090	30.6726	0.708	0.491	0.489			-0.417	-0.383	-0.361	-0.387
		350	9.849	0.541	0.324	0.324			-0.25	-0.216	-0.196	-0.22067
		0	0	0.483	0.278	0.285			-0.192	-0.17	-0.157	-0.173

LPILE 2013 Lateral Load Analyses

7" Dia., 3/8" Wall Steel Pipe Pile with 18" Dia. Single Flight Helical Tip – 20 feet Deep

LPile Plus for Windows, Version 2013-07.007

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the $p\mbox{-}y$ Method

© 1985-2013 by Ensoft, Inc. All Rights Reserved

This copy of LPile is used by:

Ardaman & Associates, Inc. Tampa, FL

Serial Number of Security Device: 136156629 This copy of LPile is licensed for exclusive use by: Ardaman & Associates, Inc., Tampa, FL

Use of this program by any entity other than Ardaman & Associates, Inc., Tampa, FL is forbidden by the software license agreement.

Fi	les Used for Analysis
Path to file locations:	G:\Projects\2014\14-9544 APE Helical Piles\LPile\

Name of input data file: Case 2 Load Range.lp'	/d
Name of output report file: Case 2 Load Range.lp'	10
Name of plot output file: Case 2 Load Range.lp'	'p
Name of runtime messeage file: Case 2 Load Range.lp'	'r

Date and Time of Analysis

Date: May 4, 2015 Time: 9:46:36

Problem Title

TIODICIII TICIC

Project Name: APE Helical Pile Analyses Job Number: 14-55-9544 Client: American Pile Equipment Company Engineer: Ross T. McGillivray, PE Description: 7-inches Dia. Steel pipe with 18" Helical Auger Tip D - Analyses = Diameter of the Plate, I = I based on Plate Diameter

Program Options and Settings

Engineering Units of Input Data and Computations: - Engineering units are US Customary Units (pounds, feet, inches)

Analysis Control Options:			
- Maximum number of iterations allowed	=	500	
- Deflection tolerance for convergence	=	1.0000E-05	ir
- Maximum allowable deflection	=	100.0000	ir
- Number of pile increments	=	100	

Loading Type and Number of Cycles of Loading: - Static loading specified Computational Options:

- Use unfactored loads in computations (conventional analysis)
- Compute pile response under loading and nonlinear bending properties of pile (only if nonlinear pile properties are input)
- Use of p-y modification factors for p-y curves not selected
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- No p-y curves to be computed and reported for user-specified depths
- Report only summary tables of pile-head deflection, maximum bending moment, and maximum shear force in output report file.

Pile Structural Properties and G	eometry		
Total number of pile sections	=	1	
Total length of pile	=	20.00	ft
Depth of ground surface below top of pile	=	0.67	ft

Pile diameter values used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile.

Point	Depth	Pile
	Х	Diameter
	ft	in
1	0.00000	18.000000
2	20.000000	18.000000

Input Structural Properties:

Pile Section No. 1:

Section Type	=	Elastic Pi	lle
Cross-sectional Shape	=	Circul	lar
Section Length	=	20.00000	ft
Top Width	=	18.00000	in
Bottom Width	=	18.00000	in
Top Area	=	254.50000	Sq. in
Bottom Area	=	254.50000	Sq. in
Moment of Inertia at Top	=	5153.00000	in^4
Moment of Inertia at Bottom	=	5153.00000	in^4
Elastic Modulus	=	889468.	lbs/in^2
	E =	Es*As/A-Pla	ate

Ground Slope and Pile Batter Angles

Ground Slope Angle	=	0.000	degrees
Pile Batter Angle	=	0.000	degrees
	=	0 000	radians

LPILE 2013 Lateral Load Analyses

32.00000 ft

=

7" Dia., 3/8" Wall Steel Pipe Pile with 18" Dia. Single Flight Helical Tip – 20 feet Deep

Layer 6 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer

Effective unit weight at bottom of layer=60.00000 pcfFriction angle at top of layer=29.00000 deg.Subgrade k at top of layer=31.80000 deg.Subgrade k at top of layer=22.00000 pciSubgrade k at bottom of layer=48.00000 pciLayer 7 is stiff clay with water-induced erosionDistance from top of pile to top of layer=68.00000 pciEffective unit weight at top of layer=58.00000 pcfEffective unit weight at top of layer=1875.00000 psfUndrained cohesion at bottom of layer=1875.00000 psfEpsilon-50 at top of layer=0.00640Epsilon-50 at top of layer=68.00000 pciSubgrade k at bottom of layer=68.00000 pciSubgrade k at bottom of layer=68.00000 pciSubgrade k at bottom of layer=58.00000 pciSubgrade k at bottom of layer=68.00000 pciSubgrade k at bottom of layer=0.00560Subgrade k at bottom of layer=58.00000 pciDistance from top of pile to top of layer=58.00000 pciDistance from top of pile to bottom of layer=58.00000 pcfEffective unit weight at bottom of layer=58.00000 pcfDistance from top of pile to bottom of layer=58.00000 pcfDistance from top of pile to bottom of layer=58.00000 pcfDistance from top of pile to bottom of layer=58.00000 pcfDistance from top of pile to bottom	D E	istance from top of pil ffective unit weight at	e to bottom top of lay	n of layen Ver	r	= 47. = 60	: 00000 1 1 00000	ft ocf
Friction angle at top of layer=29.00000 deg.Friction angle at bottom of layer=31.80000 deg.Subgrade k at bottom of layer=22.00000 pciSubgrade k at bottom of layer=48.00000 pciLayer 7 is stiff clay with water-induced erosionDistance from top of pile to top of layer=47.00000 ftDistance from top of pile to bottom of layer=68.00000 pciEffective unit weight at top of layer=58.00000 pcfUndrained cohesion at top of layer=1800.0000 psfEpsilon-50 at top of layer=0.00640Epsilon-50 at top of layer=694.00000 pciSubgrade k at bottom of layer=58.00000 pciLayer 8 is stiff clay with water-induced erosionDistance from top of pile to top of layer=58.00000 pciLayer 8 is stiff clay with water-induced erosionDistance from top of pile to op of layer=58.00000 pciUndrained cohesion at top of layer=58.00000 pciUndrained cohesion at top of layer=58.00000 pciDistance from top of pile to bottom of layer=58.00000 pciDistance from top of pile to bottom of layer=58.00000 pciDistance from top of pile to bottom of layer=58.00000 pciDistance from to	Е	ffective unit weight at	bottom of	layer	:	= 60	.00000 1	pcf
Friction angle at bottom of layer=31.80000 deg.Subgrade k at top of layer=22.00000 pciSubgrade k at bottom of layer=48.00000 pciLayer 7 is stiff clay with water-induced erosionDistance from top of pile to top of layer=47.00000 ftEffective unit weight at top of layer=58.00000 pcfEffective unit weight at top of layer=58.00000 pcfUndrained cohesion at bottom of layer=58.00000 psfUndrained cohesion at bottom of layer=0.00640Epsilon-50 at top of layer=0.00560Subgrade k at top of layer=694.00000 pciLayer 8 is stiff clay with water-induced erosion-Distance from top of pile to bottom of layer=72.00000 ftEffective unit weight at bottom of layer=58.00000 pciSubgrade k at bottom of layer=694.00000 pciSubgrade k at bottom of layer=72.00000 ftEffective unit weight at top of layer=58.00000 pciDistance from top of pile to bottom of layer=58.00000 pciEffective unit weight at bottom of layer=58.00000 pciUndrained cohesion at top of layer=7500.00000 psfEpsilon-50 at top of layer=0.00230Epsilon-50 at bott	F	riction angle at top of	layer	-		= 29	.00000 d	deg.
Subgrade k at top of layer=22.00000 pciSubgrade k at bottom of layer=48.00000 pciLayer 7 is stiff clay with water-induced erosionDistance from top of pile to top of layer=47.00000 ftDistance from top of pile to bottom of layer=68.00000 pcfEffective unit weight at top of layer=58.00000 pcfUndrained cohesion at top of layer=1500.0000 psfUndrained cohesion at top of layer=0.00640Epsilon-50 at top of layer=0.00560Subgrade k at top of layer=694.0000 pciSubgrade k at bottom of layer=905.00000 pciLayer 8 is stiff clay with water-induced erosion=72.00000 ftDistance from top of pile to top of layer=58.00000 pciLayer 8 is stiff clay with water-induced erosion=72.00000 ftDistance from top of pile to bottom of layer=58.00000 pcfEffective unit weight at bottom of layer=58.00000 pcfDistance from top of pile to bottom of layer=58.00000 pcfDistance from top of pile to bottom of layer=58.00000 pcfDidrained cohesion at top of layer=7500.00000 psfUndrained cohesion at top of layer=7500.00000 psfDistin-50 at top of layer=0.00230Epsilon-50 at top of layer=0.00230Epsilon-50 at top of layer=0.00230Epsilon-50 at top of layer=0.00230Epsilon-50 at top of layer=2000.00000 pc	F	riction angle at bottom	of layer			= 31	.80000 0	deg.
Subgrade k at bottom of layer=48.00000 pciLayer 7 is stiff clay with water-induced erosionDistance from top of pile to top of layer=47.00000 ftDistance from top of pile to bottom of layer=68.00000 pcfEffective unit weight at top of layer=58.00000 pcfUndrained cohesion at top of layer=1807.00000 psfEpsilon-50 at top of layer=1875.00000 psfSubgrade k at bottom of layer=0.00640Epsilon-50 at top of layer=684.00000 pciSubgrade k at bottom of layer=694.00000 pciSubgrade k at bottom of layer=68.00000 pciLayer 8 is stiff clay with water-induced erosion=Distance from top of pile to top of layer=68.00000 pciEffective unit weight at top of layer=58.00000 pciUndrained cohesion at top of layer=58.00000 pciDistance from top of pile to bottom of layer=58.00000 pciUndrained cohesion at top of layer=58.00000 pciUndrained cohesion at top of layer=58.00000 pciUndrained cohesion at top of layer=0.00230Epsilon-50 at top of layer=0.00230Epsilon-50 at bottom of layer=0.00230Epsilon-50 at bottom of layer=2000.00000 pciSubgrade k at b	S	ubgrade k at top of lay	er		-	= 22	.00000 p	pci
Layer 7 is stiff clay with water-induced erosion Distance from top of pile to top of layer = 47.00000 ft Effective unit weight at top of layer = 58.00000 pcf Effective unit weight at bottom of layer = 58.00000 psf Undrained cohesion at top of layer = 1500.00000 psf Epsilon-50 at top of layer = 0.00560 Subgrade k at top of layer = 694.00000 pci Distance from top of pile to top of layer = 905.00000 pci Effective unit weight at bottom of layer = 2000.0000 pci Distance from top of pile to bottom of layer = 58.00000 pci Effective unit weight at bottom of layer = 72.00000 pci Subgrade k at bottom of layer = 58.00000 pci Distance from top of pile to bottom of layer = 58.00000 pci Effective unit weight at bottom of layer = 58.00000 pci Effective unit weight at bottom of layer = 58.00000 pci Effective unit weight at bottom of layer = 0.00230 Epsilon-50 at top of layer = 0.00230 Epsilon-50 at top of layer = 0.00230 Epsilon-50 at top of layer = 0.00230 Subgrade k at bottom of layer = 2000.00000 pci Subgrade k at bottom of layer = 2000.00000 pci Effective unit weight at bottom of layer = 0.00230 Epsilon-50 at top of layer = 0.00230 Epsilon-50 at top of layer = 2000.00000 pci Subgrade k at bottom of layer = 2000.00000 pci	S	ubgrade k at bottom of	layer		:	= 48.	.00000 1	pci
Distance from top of pile to top of layer = 47.0000 ft Distance from top of pile to bottom of layer = 68.00000 pcf Effective unit weight at top of layer = 58.0000 pcf Undrained cohesion at top of layer = 1500.0000 psf Undrained cohesion at top of layer = 1875.0000 psf Undrained cohesion at bottom of layer = 0.00640 Epsilon-50 at bottom of layer = 0.00560 Subgrade k at top of layer = 694.0000 pci Distance from top of pile to top of layer = 72.00000 ft Effective unit weight at top of layer = 72.00000 ft Effective unit weight at bottom of layer = 750.0000 pci Subgrade k at bottom of layer = 58.00000 pci Distance from top of pile to bottom of layer = 58.00000 pci Effective unit weight at bottom of layer = 0.00230 Effective unit weight at bottom of layer = 0.00230 Epsilon-50 at top of layer = 0.00230 Epsilon-50 at bottom of layer = 2000.00000 pci Undrained cohesion at top of layer = 0.00230 Epsilon-50 at top of layer = 2000.00000 pci Subgrade k at bottom of layer = 2000.00000 pci Effective unit weight at bottom of layer = 0.00230 Epsilon-50 at top of layer = 2000.00000 pci Subgrade k at bottom of layer = 2000.00000 pci Effective unit bottom of layer = 2000.00000 pci Epsilon-50 at top of layer = 2000.00000 pci Subgrade k at bottom of layer = 2000.00000 pci	Laye:	r 7 is stiff clay with	water-induc	ed erosio	on			
Distance from top of pile to bottom of layer = 68.00000 ft Effective unit weight at top of layer = 58.00000 pcf Undrained cohesion at top of layer = 1875.00000 psf Undrained cohesion at bottom of layer = 1875.00000 psf Epsilon-50 at top of layer = 0.00640 Epsilon-50 at top of layer = 0.00560 Subgrade k at bottom of layer = 694.00000 pci Layer 8 is stiff clay with water-induced erosion Distance from top of pile to top of layer = 72.00000 ft Effective unit weight at bottom of layer = 58.00000 pci Effective unit weight at bottom of layer = 58.00000 pci Effective unit weight at bottom of layer = 58.00000 pci Effective unit weight at bottom of layer = 58.00000 pcf Effective unit weight at bottom of layer = 58.00000 pcf Effective unit weight at bottom of layer = 0.00230 Epsilon-50 at top of layer = 0.00230 Epsilon-50 at top of layer = 2000.00000 pci Subgrade k at bottom of layer = 0.00230 Subgrade k at bottom of layer = 2000.00000 pci	D	istance from top of pil	e to top of	layer	:	= 47	.00000 :	ft
Effective unit weight at top of layer=58.00000 pcfEffective unit weight at bottom of layer=58.00000 pcfUndrained cohesion at top of layer=1500.0000 psfUndrained cohesion at bottom of layer=0.00640Epsilon-50 at top of layer=0.00560Subgrade k at top of layer=694.00000 pciLayer 8 is stiff clay with water-induced erosion=905.00000 pciDistance from top of pile to top of layer=72.00000 ftEffective unit weight at top of layer=58.00000 pciUndrained cohesion at bottom of layer=72.00000 ftDistance from top of pile to op of layer=58.00000 pciUndrained cohesion at top of layer=58.00000 pciEffective unit weight at bottom of layer=58.00000 pciUndrained cohesion at top of layer=58.00000 pciEpsilon-50 at top of layer=0.00230Epsilon-50 at top of layer=0.00230Epsilon-50 at top of layer=0.00230Subgrade k at bottom of layer=2000.00000 pciSubgrade k at bottom of layer=2000.00000 pci	D	istance from top of pil	e to bottom	of layer	r	= 68.	.00000	ft_
Effective unit weight at bottom of layer=58.00000 pcfUndrained cohesion at bottom of layer=1500.0000 psfUndrained cohesion at bottom of layer=0.00640Epsilon-50 at bottom of layer=0.00560Subgrade k at top of layer=694.00000 pciSubgrade k at bottom of layer=905.00000 pciLayer 8 is stiff clay with water-induced erosion=72.00000 ftDistance from top of pile to top of layer=72.00000 ftEffective unit weight at bottom of layer=58.00000 pcfUndrained cohesion at top of layer=58.00000 pcfUndrained cohesion at top of layer=58.00000 pcfUndrained cohesion at top of layer=7500.0000 psfUndrained cohesion at top of layer=0.00230Epsilon-50 at top of layer=0.00230Epsilon-50 at top of layer=0.00230Subgrade k at bottom of layer=2000.00000 pciSubgrade k at bottom of layer=2000.00000 pci(Depth of lowest soil layer extends52.00 ft below pile tip)	E	ffective unit weight at	top of lay	rer	-	= 58.	.00000 1	pci
Undrained cohesion at top of layer=1800.00000 psfUndrained cohesion at top of layer=1805.00000 psfEpsilon-50 at top of layer=0.00640Epsilon-50 at bottom of layer=0.00560Subgrade k at top of layer=694.00000 pciSubgrade k at bottom of layer=905.00000 pciLayer 8 is stiff clay with water-induced erosion=Distance from top of pile to top of layer=68.00000 ftDistance from top of pile to bottom of layer=72.00000 pcfEffective unit weight at top of layer=58.00000 pcfUndrained cohesion at top of layer=7500.00000 psfUndrained cohesion at top of layer=7500.00000 psfUndrained cohesion at top of layer=0.00230Epsilon-50 at top of layer=0.00230Subgrade k at bottom of layer=2000.00000 pciSubgrade k at bottom of layer=2000.00000 pci(Depth of lowest soil layer extends52.00 ft below pile tip)	E	ffective unit weight at	bottom of	layer		= 58.	.000000 1	pci
bindramed cohesion at bottom of layer= 0.00540Epsilon-50 at top of layer= 0.00560Subgrade k at top of layer= 694.00000 pciSubgrade k at bottom of layer= 905.00000 pciLayer 8 is stiff clay with water-induced erosionDistance from top of pile to top of layer= 72.00000 ftEffective unit weight at top of layer= 58.00000 pcfEffective unit weight at bottom of layer= 58.00000 pcfUndrained cohesion at top of layer= 7500.00000 psfUndrained cohesion at top of layer= 0.00230Epsilon-50 at top of layer= 0.00230Subgrade k at bottom of layer= 2000.00000 pci(Depth of lowest soil layer extends52.00 ft below pile tip)	U. TT-	ndrained conesion at to	p of layer	or		= 1500. - 1975	.00000 1	psi
appriorappriorappriorappriorEpsilon-50 at bottom of layer=0.00560Subgrade k at top of layer=694.00000 pciSubgrade k at bottom of layer=905.00000 pciLayer 8 is stiff clay with water-induced erosionDistance from top of pile to top of layer=68.00000 ftEffective unit weight at top of layer=72.00000 pciEffective unit weight at top of layer=58.00000 pcfUndrained cohesion at top of layer=7500.00000 psfEpsilon-50 at top of layer=0.00230Epsilon-50 at top of layer=0.00230Subgrade k at bottom of layer=2000.00000 pciSubgrade k at bottom of layer=2000.00000 pci(Depth of lowest soil layer extends52.00 ft below pile tip)	0. F1	ngilon-50 at top of law	er	er		- 10/5	00640	0B1
Subgrade k at top of layer=694.00000 pciSubgrade k at bottom of layer=694.00000 pciSubgrade k at bottom of layer=905.00000 pciLayer 8 is stiff clay with water-induced erosionImage: Subgrade k at bottom of pile to bottom of layer=Distance from top of pile to bottom of layer=68.00000 ftDistance from top of pile to bottom of layer=72.00000 ftEffective unit weight at top of layer=58.00000 pcfUndrained cohesion at top of layer=7500.00000 psfUndrained cohesion at bottom of layer=0.00230Epsilon-50 at top of layer=0.00230Subgrade k at bottom of layer=2000.00000 pciSubgrade k at bottom of layer=2000.00000 pci(Depth of lowest soil layer extends52.00 ft below pile tip)	E	psilon-50 at bottom of	laver			= 0	.00560	
Subgrade k at bottom of layer=905.00000 pciLayer 8 is stiff clay with water-induced erosionDistance from top of pile to top of layer=68.00000 ftDistance from top of pile to bottom of layer=72.00000 ftEffective unit weight at top of layer=58.00000 pcfUndrained cohesion at top of layer=7500.00000 psfUndrained cohesion at bottom of layer=7500.00000 psfEpsilon-50 at top of layer=0.00230Subgrade k at top of layer=2000.00000 pciSubgrade k at bottom of layer=2000.00000 pci(Depth of lowest soil layer extends52.00 ft below pile tip)	S	ubgrade k at top of lav	er			= 694	.00000 1	oci
Layer 8 is stiff clay with water-induced erosion Distance from top of pile to top of layer = 68.00000 ft Distance from top of pile to bottom of layer = 72.00000 pcf Effective unit weight at top of layer = 58.00000 pcf Undrained cohesion at top of layer = 7500.00000 psf Undrained cohesion at bottom of layer = 7500.00000 psf Epsilon-50 at top of layer = 0.00230 Subgrade k at bottom of layer = 2000.00000 pci Subgrade k at bottom of layer = 2000.00000 pci (Depth of lowest soil layer extends 52.00 ft below pile tip)	S	ubgrade k at bottom of	layer			= 905	.00000 1	pci
Layer 8 is stiff clay with water-induced erosion Distance from top of pile to top of layer = 68.00000 ft Distance from top of pile to bottom of layer = 72.00000 pcf Effective unit weight at top of layer = 58.00000 pcf Undrained cohesion at top of layer = 7500.00000 psf Undrained cohesion at top of layer = 7500.00000 psf Epsilon-50 at top of layer = 0.00230 Subgrade k at top of layer = 2000.00000 pci Subgrade k at bottom of layer = 2000.00000 pci (Depth of lowest soil layer extends 52.00 ft below pile tip)								
Distance from top of pile to top of layer=68.00000 ftDistance from top of pile to bottom of layer=72.00000 ftEffective unit weight at top of layer=58.00000 pcfEffective unit weight at bottom of layer=58.00000 pcfUndrained cohesion at top of layer=7500.0000 psfEpsilon-50 at top of layer=0.00230Epsilon-50 at bottom of layer=0.00230Subgrade k at bottom of layer=2000.00000 pciSubgrade k at bottom of layer=2000.00000 pci(Depth of lowest soil layer extends52.00 ft below pile tip)	Laye	r 8 is stiff clay with	water-induc	ed erosio	on			
Distance from top of pile to bottom of layer = 72.00000 ft Effective unit weight at top of layer = 58.00000 pcf Effective unit weight at bottom of layer = 58.00000 pcf Undrained cohesion at top of layer = 7500.00000 psf Undrained cohesion at bottom of layer = 0.00230 Epsilon-50 at top of layer = 0.00230 Subgrade k at top of layer = 2000.00000 pci Subgrade k at bottom of layer = 2000.00000 pci (Depth of lowest soil layer extends 52.00 ft below pile tip)	D	istance from top of pil	e to top of	layer		= 68.	.00000 ±	£t
Effective unit weight at top of layer=58.00000 pcfEffective unit weight at bottom of layer=58.00000 pcfUndrained cohesion at top of layer=7500.00000 psfUndrained cohesion at bottom of layer=0.00230Epsilon-50 at top of layer=0.00230Epsilon-50 at bottom of layer=2000.00000 pciSubgrade k at top of layer=2000.00000 pci(Depth of lowest soil layer extends52.00 ft below pile tip)	D	istance from top of pil	e to bottom	of layer	r	= 72.	.00000 :	Ét
Effective unit weight at bottom of layer=58.00000 pcfUndrained cohesion at top of layer=7500.00000 psfUndrained cohesion at bottom of layer=7500.00000 psfEpsilon-50 at top of layer=0.00230Epsilon-50 at bottom of layer=0.00230Subgrade k at top of layer=2000.00000 pciSubgrade k at bottom of layer=2000.00000 pci(Depth of lowest soil layer extends52.00 ft below pile tip)	Е	ffective unit weight at	top of lay	rer	-	= 58.	.00000 p	pcf
Undrained cohesion at top of layer=7500.00000 pstUndrained cohesion at bottom of layer=7500.00000 psfEpsilon-50 at top of layer=0.00230Epsilon-50 at bottom of layer=0.00230Subgrade k at bottom of layer=2000.00000 pciSubgrade k at bottom of layer=2000.00000 pci(Depth of lowest soil layer extends52.00 ft below pile tip)	E	ffective unit weight at	bottom of	layer	-	= 58.	.00000 1	pcf
Understree conestion at bottom of layer=7500.00000 pstEpsilon-50 at top of layer=0.00230Epsilon-50 at bottom of layer=0.00230Subgrade k at top of layer=2000.00000 pciSubgrade k at bottom of layer=2000.00000 pci(Depth of lowest soil layer extends52.00 ft below pile tip)	U:	ndrained cohesion at to	p of layer			= 7500.	.00000 1	psi
apprive of a ver = 0.00230 Epsilon-50 at bottom of layer = 0.00230 Subgrade k at top of layer = 2000.00000 pci Subgrade k at bottom of layer = 2000.00000 pci (Depth of lowest soil layer extends 52.00 ft below pile tip)	U:	norained cohesion at bo	ttom of lay	rer	:	= 7500.	.00000 l	psi
Subgrade k at bottom of layer - 0.00230 Subgrade k at bottom of layer = 2000.00000 pci Subgrade k at bottom of layer = 2000.00000 pci (Depth of lowest soil layer extends 52.00 ft below pile tip)	E] P	psilon-50 at top of lay	er laver			= 0.	00230	
(Depth of lowest soil layer extends 52.00 ft below pile tip)	E. S	ubgrade k at top of lav	rayer er			- 0. = 2000	.00230 .00000 1	oci
(Depth of lowest soil layer extends 52.00 ft below pile tip)	S	ubgrade k at bottom of	laver		-	= 2000	.00000 1	oci
	(1	Depth of lowest soil la	yer extends	52.00	ft below	pile tip	p)	
		Layer	Layer	Effective	Undrained	Angle of	Strain	
Layer Layer Effective Undrained Angle of Strain	Layer Num.	Soil Type (p-y Curve Criteria)	Depth ft	Unit Wt. pcf	Cohesion psf	Friction deg.	Factor Epsilon S	50 p
Layer Layer Effective Undrained Angle of Strain Layer Soil Type Depth Unit Mt. Cohesion Friction Factor I Num. (p-Y Curve Criteria) ft pof psf deg. Epsilon 50 p	1	Sand (Reese, et al.)	0.670	115.000		36.000		
Layer Layer Effective Undrained Angle of Strain Layer (p-Soil Type Depth Unit Mt. Cohesion Friction Pactor I Num. (p-Curve Criteria) ft per deg. Epsilon 50 p 1 Sand (Peese et al.) 0.670 115.000 36.000	2	Sand (Reese, et al.)	4.900	115.000 60.000		32.000		
Layer Layer Effective Undrained Angle of Strain Layer Soil Type Depth Unit Wt. Cohesion Friction Factor J Num. (p-y Curve Criteria) ft pcf psf deg. Epsilon 50 p 1 Sand (Reese, et al.) 0.670 115.000 36.000 2 Sand (Reese, et al.) 4.900 60.000 32.000	3	Soft Clay	17.000 17.000	60.000 57.000	125.000	27.000	0.0027	70
Layer Layer Effective Undrained Angle of Strain Layer Soll Type Depth Unit Wt. Cohesion Priction Pactor 1 Num. (P-Y Curve Criteria) ft pcf pgf deg. Epsilon 50 1 1 Sand (Reese, et al.) 0.670 115.000 32.000 2 Sand (Reese, et al.) 4.900 60.000 32.000 2 Sand (Reese, et al.) 17.000 57.000 125.000 0.00270	4	- Sand (Reese, et al.)	22.000	57.000 60.000	125.000	27.000	0.0270	00
Layer Layer Effective Undrained Angle of Strain Layer Soli Type Depth Unit Wt. Cohesion Friction Pactor 1 Num. (P-Y Curve Criteria) ft pcf paf deg. Epsilon 50 1 1 Sand (Reese, et al.) 0.670 115.000 32.000 2 Sand (Reese, et al.) 4.900 160.000 32.000 3 Soft Clay 17.000 60.001 125.000 0.02700 4 Sand (Reese, et al.) 22.000 57.000 125.000 0.02700			27.000	60.000		27.000		
Layer Layer Effective Undrained Angle of Strain Layer Soli Type Depth Unit Wt. Cohesion Friction Factor Factor <td< th=""><td>5</td><td>Soft Clay</td><td>27.000 32.000</td><td>27.000 57.000</td><td>125.000 125.000</td><td></td><td>0.0268</td><td>80 80</td></td<>	5	Soft Clay	27.000 32.000	27.000 57.000	125.000 125.000		0.0268	80 80
Layer Layer Effective Undrained Angle of Pactor Strain Num. (p-y Curve Criteria) ft pcf paf deg. Fpactor pag 1 Sand (Reese, et al.) 0.670 115.000 36.000 2 Sand (Reese, et al.) 4.900 60.000 32.000 3 Soft Clay 17.000 57.000 125.000 0.02700 4 Sand (Reese, et al.) 22.000 57.000 125.000 0.02270 4 Sand (Reese, et al.) 27.000 60.000 27.000 5 Soft Clay 27.000 27.000 0.02280	6	Sand (Reese, et al.)	32.000	60.000		29.000		
Layer Layer Experiment Strain Layer Soll Type Depth Unit Mt. Cohesion Friction	7	Stiff Clay with Free Water	47.000	58.000	1500.000	51.600 	0.0064	40 6
Layer Layer Effective Undrained Angle of Strain Num. (P-Y Curve Criteria) ft pcf paf deg. Epsth 1 1 Sand (Reese, et al.) 0.670 115.000 32.000 2 Sand (Reese, et al.) 4.900 105.000 32.000 3 Soft Clay 17.000 60.000 27.000 0.02700 4 Sand (Reese, et al.) 42.000 60.000 27.000 0.02700 3 Soft Clay 17.000 60.000 27.000 0.02700 4 Sand (Reese, et al.) 22.000 60.000 27.000 0.02860 5 Soft Clay 27.000 7.000 125.000 0.02680 5 Soft Clay 27.000 7.000 125.000 0.02680 6 Sand (Reese, et al.) 32.000 <t< th=""><td></td><td></td><td>68.000</td><td>50.000</td><td>1075 000</td><td></td><td>0 0057</td><td></td></t<>			68.000	50.000	1075 000		0 0057	
Layer Layer Effective Undrained Angle of Strain Layer Soll Type Depth Unit Nt. Cohesion Friction Factor F Num. (p-y Curve Criteria) ft pcf pdg, Bealin 50 F 1 Sand (Reese, et al.) 0.670 115.000 36.000 2 Sand (Reese, et al.) 4.900 60.000 32.000 3 Soft Clay 17.000 57.000 125.000 0.00270 4 Sand (Reese, et al.) 27.000 57.000 125.000 0.02270 4 Sand (Reese, et al.) 27.000 27.000 27.000 5 Soft Clay 27.000 50.001 0.02280 0.02280 6 Sand (Reese, et al.) 32.000 0.02280 0.02280 7 Stiff Clay with Free Water 47.000	8	Stiff Clay with Free Water	68 000	58.000	7500 000		0.0050	30 20

Soil and Rock Layering Information

The soil profile is modelled using 8 layers

Layer 1 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer	=	0.67000	ft
Distance from top of pile to bottom of layer	=	4.90000	ft
Effective unit weight at top of layer	=	115.00000	pcf
Effective unit weight at bottom of layer	=	115.00000	pcf
Friction angle at top of layer	=	36.00000	deg.
Friction angle at bottom of layer	=	32.00000	deg.
Subgrade k at top of layer	=	92.00000	pci
Subgrade k at bottom of layer	=	54.00000	pci

Layer 2 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer	=	4.90000	ft
Distance from top of pile to bottom of layer	=	17.00000	ft
Effective unit weight at top of layer	=	60.00000	pcf
Effective unit weight at bottom of layer	=	60.00000	pcf
Friction angle at top of layer	=	32.00000	deg.
Friction angle at bottom of layer	=	27.00000	deg.
Subgrade k at top of layer	=	54.00000	pci
Subgrade k at bottom of layer	=	20.00000	pci

Layer 3 is soft clay, p-y criteria by Matlock, 1970

Distance from top of pile to top of layer	=	17.00000 ft
Distance from top of pile to bottom of layer	=	22.00000 ft
Effective unit weight at top of layer	=	57.00000 pcf
Effective unit weight at bottom of layer	=	57.00000 pcf
Undrained cohesion at top of layer	=	125.00000 psf
Undrained cohesion at bottom of layer	=	125.00000 psf
Epsilon-50 at top of layer	=	0.00270
Epsilon-50 at bottom of layer	=	0.02700

Layer 4 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer	=	22.00000 ft
Distance from top of pile to bottom of layer	=	27.00000 ft
Effective unit weight at top of layer	=	60.00000 pcf
Effective unit weight at bottom of layer	=	60.00000 pcf
Friction angle at top of layer	=	27.00000 deg.
Friction angle at bottom of layer	=	27.00000 deg.
Subgrade k at top of layer	=	20.00000 pci
Subgrade k at bottom of layer	=	20.00000 pci

Layer 5 is soft clay, p-y criteria by Matlock, 1970

Distance from top of pile to top of layer	=	27.00000 ft
Distance from top of pile to bottom of layer	=	32.00000 ft
Effective unit weight at top of layer	=	27.00000 pcf
Effective unit weight at bottom of layer	=	57.00000 pcf
Undrained cohesion at top of layer	=	125.00000 psf
Undrained cohesion at bottom of layer	=	125.00000 psf
Epsilon-50 at top of layer	=	0.02680
Epsilon-50 at bottom of layer	=	0.02680

LPILE 2013 Lateral Load Analyses

7" Dia., 3/8" Wall Steel Pipe Pile with 18" Dia. Single Flight Helical Tip – 20 feet Deep

Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 8

Load No.	Load Type		Condition 1		Condition 2		Axial Thrust Force, lbs	Compute Top y vs. Pile Length
1	1	V =	500.00000 lbs	M =	0.0000 in	n-lbs	0.000000	No
2	1	V =	1000.00000 lbs	M =	0.0000 in	n-lbs	0.000000	No
3	1	V =	2000.00000 lbs	M =	0.0000 in	n-lbs	0.000000	No
4	1	V =	4000.00000 lbs	M =	0.0000 in	n-lbs	0.000000	No
5	1	V =	8000.00000 lbs	M =	0.0000 in	n-lbs	0.000000	No
б	1	V =	12000. lbs	M =	0.0000 in	n-lbs	0.000000	No
7	1	V =	16000. lbs	M =	0.0000 in	n-lbs	0.000000	No
8	1	V =	20000 lbs	M =	0 0000 in	n-lbs	0 000000	No

V = perpendicular shear force applied to pile head

M = bending moment applied to pile head

y = lateral deflection relative to pile axis

S = pile slope relative to original pile batter angle

R = rotational stiffness applie to pile head

Axial thrust is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Moment-curvature properties were derived from elastic section properties

Summary of Pile Response(s)

Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, lbs, and Load 2 = Moment, in-lbs Load Type 2: Load 1 = Shear, lbs, and Load 2 = Slope, radians Load Type 3: Load 1 = Shear, lbs, and Load 2 = Rotational Stiffness, in-lbs/radian Load Type 4: Load 1 = Top Deflection, inches, and Load 2 = Moment, in-lbs Load Type 5: Load 1 = Top Deflection, inches, and Load 2 = Slope, radians

Load Case No.	Load Type No.	P Co V(Y(ile-head ndition 1 lbs) or inches)	Pi Con in-l or i	le-head dition 2 b, rad., n-lb/rad.	Axial Loading lbs	Pile-head Deflection inches	Maximum Moment in Pile in-lbs	Maximum Shear in Pile lbs	Pile-head Rotation radians
1	1	V =	500.0000	M =	0.000	0.000000	0.01704185	16187.	500.0000	-0.00029039
2	1	V =	1000.0000	M =	0.000	0.000000	0.03409267	32368.	1000.0000	-0.00058086
3	1	V =	2000.0000	M =	0.000	0.000000	0.06820041	64725.	2000.0000	-0.00116187
4	1	V =	4000.0000	M =	0.000	0.000000	0.13800807	130759.	4000.0000	-0.00234760
5	1	V =	8000.0000	M =	0.000	0.000000	0.31419740	287764.	8000.0000	-0.00519969
6	1	V =	12000.	M =	0.000	0.000000	0.56941025	473952.	12000.	-0.00890941
7	1	V =	16000.	M =	0.000	0.0000000	0.89957783	665692.	16000.	-0.01325965
0	1	17 -	20000	м –	0 000	0 0000000	1 20076116	975009	20000	0 01919241

The analysis ended normally.